On the combinatorics of Riordan arrays and Sheffer polynomials: monoids, operads and monops
نویسندگان
چکیده
We introduce a new algebraic construction, monop, that combines monoids (with respect to the product of species), and operads (monoids with respect to the substitution of species) in the same algebraic structure. By the use of properties of cancellative set-monops we construct a family of partially ordered sets whose prototypical examples are the Dowling lattices. They generalize the partition posets associated to a cancellative operad, and the subset posets associated to a cancellative monoid. Their generalized Withney numbers of the first and second kind are the entries of a Riordan matrix and its inverse. Equivalently, they are the connecting coefficients of two umbral inverse Sheffer sequences with the family of powers {x }n=0. We study algebraic monops, their associated algebras and the free monop-algebras, as part of a program in progress to develop a theory of Koszul duality for monops. Dedicated to the memory of Gian Carlo Rota, 1932-1999.
منابع مشابه
Generalized Riordan arrays
In this paper, we generalize the concept of Riordan array. A generalized Riordan array with respect to cn is an infinite, lower triangular array determined by the pair (g(t), f(t)) and has the generic element dn,k = [t/cn]g(t)(f(t))/ck, where cn is a fixed sequence of non-zero constants with c0 = 1. We demonstrate that the generalized Riordan arrays have similar properties to those of the class...
متن کاملRiordan Arrays, Sheffer Sequences and “Orthogonal” Polynomials
Riordan group concepts are combined with the basic properties of convolution families of polynomials and Sheffer sequences, to establish a duality law, canonical forms ρ(n,m) = ( n m ) cFn−m(m), c 6= 0, and extensions ρ(x, x − k) = (−1) xcFk(x), where the Fk(x) are polynomials in x, holding for each ρ(n,m) in a Riordan array. Examples ρ(n,m) = ( n m ) Sk(x) are given, in which the Sk(x) are “or...
متن کاملIdentities on Bell polynomials and Sheffer sequences
In this paper, we study exponential partial Bell polynomials and Sheffer sequences. Two new characterizations of Sheffer sequences are presented, which indicate the relations between Sheffer sequences and Riordan arrays. Several general identities involving Bell polynomials and Sheffer sequences are established, which reduce to some elegant identities for associated sequences and cross sequences.
متن کاملThe Characterization of Riordan Arrays and Sheffer-type Polynomial Sequences
Here we present a characterization of Sheffer-type polynomial sequences based on the isomorphism between the Riordan group and Sheffer group and the sequence characterization of Riordan arrays. We also give several alternative forms of the characterization of the Riordan group, Sheffer group and their subgroups. Formulas for the computation of the generating functions of Riordan arrays and Shef...
متن کاملSelf - Inverse Sheffer Sequences and Riordan
In this short note we focus on self-inverse Sheffer sequences and involutions in the Riordan group. We translate the results of Brown and Kuczma on self-inverse sequences of Sheffer polynomials to describe all involutions in the Riordan group.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017